Introduction

XSeries devices, from the Totalflow division of ABB provide functionality only possible through the convergence of RTU, PLC and flow computer concepts. Representing a unique milepost in the development of remote, low power measurement and control devices, ABB Totalflow’s XSeries products are available in one of two product families:

- eXtendable Flow Computers (XFC)
- eXtendable Remote Controllers (XRC)

This datasheet focuses on the XFC products, for linear meters. Benefits and features of these particular products include:

- Smart Integral Multivariable Transducer (XIMV)
- Comprehensive custody quality math and data history
- Automation, control, alarming, and data logging capability
- Local display and optional keypad
- Quick, easy installation
- Flexible communications
- Extendable hardware and software

These XSeries devices provide significant value for remote measurement sites. With low power, accuracy, and system integrity built in, these flow computers are proven daily on thousands of sites. Totalflow products provide users the best opportunity for successful projects – site by site or system by system.
Description

These XSeries devices are full featured units that are provided with an Integral Multivariable Transducer (XIMV) to measure static pressure and temperature from a single linear meter run. Each XIMV is housed in a shielded environmentally protected enclosure which is mounted inside the main electronics compartment and is certified and calibrated at Totalflow’s factory before shipment. Multi-tube capability is included with each unit and is easily invoked with a few configuration changes and interface connection to external transducers, either digital or analog.

Each unit is powered by an internal battery that can be solar charged (or other suitable DC supply) for remote unattended operation. Several charging options are available. The XFC 6411 and XFC 6414 accommodate up to a 26AH battery and the XFC 6714 accommodates up to a 42AH.

XIMV calibration and flow computer configuration parameters are programmed into a permanently non-volatile memory at the factory. This allows the units to be shipped with your exact configuration which will remain intact, even if a ‘cold start’ is required.

Communications interface cables and equipment can be installed at the factory, ready for quick installation.

Checking and modifying configuration and calibration is accomplished with ABB Totalflow’s PCCU32 laptop software running on a 32-bit Windows operating system.

In addition to basic flow computer inputs (PI, SP and TF), the standard device includes: two analog inputs (0-5 volts), two digital outputs, and one state input (configurable as either digital inputs or pulse accumulator inputs). IO modules can be added to extend the hardware IO capability. The XFC 6414 accommodates up to three (3) TFIO modules and the XFC 6714 accommodates up to six (6). The XFC 6411 cannot accommodate IO modules.

In addition to the local configuration port, two communications ports are supplied with the standard unit. These ports are modular and user selectable for RS232 and/or RS485. An additional port may be added using a TFIO Module. Communications throughput is rated to 19.2 Kbaud. Protocols can include Totalflow native low power, Totalflow modbus RTU or ASCII, Enron modbus, and others.
Hardware modularity

Hardware functionality of XSeries devices can be extended in a flexible and simple way by adding modular IO as needed.

Totalflow’s TFIO modules are designed to accommodate low power, harsh environments at economical cost. The system recognizes the module types automatically and configures the IO Scanner subsystem accordingly.

Supported TFIO Modules Include:
- Analog In (8 channel)
- Analog Out (4 channel)
- Binary (DI, DO, PI-8 channels, software selectable)
- RTD (4 channel)
- Thermocouple (4 channel)
- Valve Control (digital or analog)
- Communications (software selectable RS232, 485, 422-1 channel)

For more detailed information about TFIO modules request information on data sheets 2101105 through 2101112.

Software modularity

A keenly flexible and stable real time environment, this software represents significant modularization through use of object oriented design principles. Totalflow supplied objects (applications) can be instantiated in our factory or by you, one or more times on the same device. It is this framework that allows the support for multi-tube measurement.

Supported Software applications continually grow, but a sample of standard applications include:
- AGA3 orifice meter run
- ISO 5167 orifice meter run
- VCones meter run
- Wedge Meter (water or gas)
- AGA7 rotary/turbine meter run
- Ultrasonic meter run
- Real-time Datalogger (trending)
- Valve Control (Feedback controller)
- RAMS (Alarming, Exception Reporting)
- Operators (simple custom math / logic)
- IEC 61131 (complex math / logic)
- Selectable Units (user selectable engineering units)
- Display / Keypad Handler
- Wedge Meter (water or gas)
- IO subsystem Handler
- Tank Level Application
- Therms master application
- Therms slave application
- Multiple protocols (Totalflow native low power,
 Modbus slave (binary/ASCII), Modbus master (binary/ASCII), LevelMaster, Btu 8000/8001, Enron Modbus,
 MotorSaver, ABB 267CS/269CS XIMV Multivariable,
 Altronic and others).
XFC 6411, XFC 6414, and XFC 6714
Linear flow computer

XSeries flow computer features

- Significant hardening against over-current / transients
- Positive Temperature Coefficient, resetting fuses and
 transient protection on
 - VBATT and SWVBATT outputs
 - Each of the Digital Outputs
 - Battery Charger input
- EMI/RFI suppression beads on all I/O points
- Protection against reverse polarity wiring
- Power supply circuit designed to protect XIMV from
 hot insertion
- Low power design operating as low as 8 ma (<100 mW)
- Aluminum enclosure, powder coated
- Flexible accommodation of communications hardware
- Cost effective communications kits
- Stable time base (accurate integration)
- Rechargeable, lead acid batteries
- Solar, AC or DC charging options
- Dual level security code data protection
- Monitors user limits for detection, and reporting
 of abnormal conditions
- 40+ days historical records (user configurable
 up to 180+ days of hourly and daily data records)
- Defaults to 200 Events. User configurable.
- Complies with API 21.1 standard for custody transfer
 devices
- Flow and energy calculations per AGA 3-85, AGA 3-92,
 AGA-7 and AGA-5
- Super compressibility calculations per NX-19 or AGA8-92
 Gross or Detail
- Smart (temperature and pressure compensated) integral,
 factory calibrated, multi-variable transducer (XIMV)
- Flow retention during transducer calibration
- Selectable 3 or 5 point transducer calibration
 of static pressure
- Single or multi-point (up to 10) K factor calibration
 of pulse input
- Programmable flow period window to detect flow
 zero cut-off
- 100 ohm platinum RTD
- Automatic internal calibration of RTD with user
 programmable offset
- Hazardous Area Classifications: CSA C/US Class 1,
 Division 2 Groups C/D, (ATEX EEExd11B, IECEx
 Exd11B [pending])
- Real time clock that keeps running on lithium battery
- Advanced embedded data logger
- Programmable alarm filtering
- Exception reporting capability
- Multiple protocol options including Totalflow packet
 protocol, various modbus protocols and others
- User programmable modbus register maps
- User programmable math and logic sequences
- IEC 61131 capability
- Valve control and nominations capability
A. FC195 board
B. Communications equipment compartment
C. Battery compartment
D. TFIO modules
E. XIMV, Integral Multivariable Transducer
XFC 6411, XFC 6414, and XFC 6714

Linear flow computer

General specifications

<table>
<thead>
<tr>
<th></th>
<th>XFC 6411</th>
<th>XFC 6414</th>
<th>XFC 6714</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensions</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Width</td>
<td>10.000 in. (254.00 mm)</td>
<td>12.756 in. (324.00 mm)</td>
<td>14.920 in. (379.53 mm)</td>
</tr>
<tr>
<td>Height</td>
<td>11.810 in. (299.97 mm)</td>
<td>16.512 in. (419.40 mm)</td>
<td>20.440 in. (519.17 mm)</td>
</tr>
<tr>
<td>Depth</td>
<td>9.370 in. (233.00 mm)</td>
<td>10.269 in. (260.83 mm)</td>
<td>13.710 in. (348.23 mm)</td>
</tr>
<tr>
<td>Installed depth</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pipe mount</td>
<td>10.680 in. (271.27 mm)</td>
<td>11.584 in. (294.23 mm)</td>
<td>14.560 in. (369.82 mm)</td>
</tr>
<tr>
<td>Wall mount</td>
<td>10.120 in. (257.05 mm)</td>
<td>11.019 in. (279.88 mm)</td>
<td>14.000 in. (355.60 mm)</td>
</tr>
<tr>
<td>Weight (w/o battery)</td>
<td>Approx. 11.5 lbs (5.0 kg)</td>
<td>Approx. 12 lbs. (5.9 kg)</td>
<td>Approx. 27 lbs. (12.25 kg)</td>
</tr>
<tr>
<td>Max IO modules</td>
<td>0</td>
<td>3</td>
<td>6</td>
</tr>
<tr>
<td>Max battery capacity</td>
<td>26AH</td>
<td>26AH</td>
<td>42AH</td>
</tr>
<tr>
<td>Certification</td>
<td>CSA/NRTL Class 1, Division 2, Groups C & D hazardous area classification. (ATEX Zone 2 pending)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mounting</td>
<td>Wall, pipe, or direct</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Operating temperature (ambient)</td>
<td>-40°F to 140°F (-40°C to 60°C)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Humidity</td>
<td>0 - 95% non-condensing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMC requirements</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>EMISSIONS: European Regions:</td>
<td>EN55011/EN55022 Class A Emissions (Radiated & Conducted)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IMMUNITY: European Regions:</td>
<td>ICES-003 Issue 2, Rev. 1, Class A ITE Emissions</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FC195 board

Power	Nominal 12 VDC battery
Charger	Solar or 16-18 VDC
Memory	Data stored in 512K SRAM. (Lithium battery backup)
	Applications programs stored in 512K Flash.
	Flash loader stored in 512K PROM
	Registry and configuration files stored in 32K E/PROM
	Transducer factory calibration data stored in separate E/PROM
Comm Ports	1 - dedicated – PCCU (Local Configuration Port)
	2 - RS232 or RS485 (via board insertion modules)
Microprocessor	High integration micro-controller with 20bit address bus (1M), operating at 11MHz
LCD interface	Dedicated interface for 2 X 24 Liquid Crystal Display (LCD)
Keypad interface	Dedicated interface for optional ABB supplied keypad
IO expansion	I²C bus interface for TFlO modules
Security switch	Dual-level security switch on-board
Time base stability	± 7.5 ppm (parts per million)
Pulse input bandwidth	Up to 20 KHz
IO scan rate	1 time per second
Integral Multivariable (XIMV) specifications

Multivariable unit

<table>
<thead>
<tr>
<th>Temperature limits</th>
<th>Compensated</th>
<th>-20 to 140°F (-29 to 60°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational</td>
<td>-40 to 185°F (-40 to 85°C)</td>
<td></td>
</tr>
<tr>
<td>Storage</td>
<td>-40 to 185°F (-40 to 85°C)</td>
<td></td>
</tr>
</tbody>
</table>

Analog-to-Digital resolution (IMV & Onboard AI's)	18 Bit maximum resolution (0.00038% FS); 16 Bit nominal resolution (.0.0015%FS)
Vibration performance	1.5 INW per G (2G maximum) at 1 Hz, decreasing to zero at 1KHz in straight line mode
Mounting specification	Change from perpendicular (front to back / around X-axis) will be ≤ 1.5 INW (Can be corrected with calibration)
Reference conditions	Temperature at most recent factory or user calibration; Static Pressure and Differential Pressure < 100% of URL

Static pressure

Accuracy (including linearity, hysteresis, & repeatability at reference conditions)	± 0.05% of user calibrated spans from 20% to 100% of URL
Ambient temperature effect per 160 °F (71 °C)	± 0.15% of URL ± 0.125% of reading
Stability (for 12 months)	± 0.1% of URL

Temperature

Process range	-80 to +230°F (-62 to 110°C)
Accuracy (as shipped from factory)	± 0.35°F (± 0.2°C) over operating range
Accuracy (after single point field calibration)	± 0.2°F (± 0.12°C) repeatability over operating range

Available absolute pressure ranges (PSIA)

<table>
<thead>
<tr>
<th>100</th>
<th>150</th>
<th>250</th>
<th>500</th>
<th>1000</th>
<th>1500</th>
<th>2000</th>
<th>3200</th>
</tr>
</thead>
</table>
Contact us

ABB Inc.
Upstream Oil & Gas
Process Automation
Toll-free: +1 800 442 3097
Quotes: totalflow.inquiry@us.abb.com
Orders: totalflow.order@us.abb.com
Training: totalflow.training@us.abb.com
Support: totalflowsupport@us.abb.com

Upstream Oil & Gas
Main Office
7051 Industrial Boulevard
Bartlesville, OK 74006
Ph: +1 918 338 4888

Upstream Oil & Gas
California Office
4300 Stine Road, Suite 405-407
Bakersfield, CA 93313
Ph: +1 661 833 2030

Upstream Oil & Gas
Kansas Office
2705 Centennial Boulevard
Liberal, KS 67901
Ph: +1 620 626 4350

Upstream Oil & Gas
Texas Offices
3700 West Sam Houston
Parkway South, Suite 600
Houston, TX 77042
Ph: +1 713 587 8000

3900 South County Road 1290
Odessa, TX 79765
Ph: +1 432 563 5144

150 Eagle Ford Road
Pleasanton, TX 78064
Ph: +1 830 569 8062

www.abb.com/upstream

Note
We reserve the right to make technical changes or modify the contents of this document without prior notice. With regard to purchase orders, the agreed particulars shall prevail. ABB does not accept any responsibility whatsoever for potential errors or possible lack of information in this document.

We reserve all rights in this document and in the subject matter and illustrations contained therein. Any reproduction, disclosure to third parties or utilization of its contents – in whole or in parts – is forbidden without prior written consent of ABB.

Copyright © 2016 ABB Inc.
All rights reserved